Chapter 02 - Unconstrained optimization¶
# Import required packages
import torch
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import matplotlib.patches as patches
import matplotlib.pyplot as plt
from utils import plot_contours
# Set plot to use TeX for rendering equations.
plt.rcParams["text.usetex"] = True
plt.rcParams["font.size"] = 13
Figure 2.1¶
A exemplary function $f$ defined on a two-dimensional domain to visualize the optimization problem as a search for the minimum in a "mountaineous landscape".
def f(x):
# This is a slight modification of Himmelblau's function
return (
(x[..., 0] ** 2 + x[..., 1] - 11) ** 2
+ (x[..., 0] + x[..., 1] ** 2 - 7) ** 2
+ x[..., 0]
+ x[..., 1]
)
# Define the two-dimensional plot domain
x1 = torch.linspace(-5, 5, steps=100)
x2 = torch.linspace(-5, 5, steps=100)
x = torch.stack(torch.meshgrid(x1, x2, indexing="xy"), dim=2)
# Create subplots
fig = make_subplots(rows=1, cols=2, specs=[[{"type": "xy"}, {"type": "surface"}]])
fig.add_trace(go.Contour(z=f(x), x=x1, y=x2, ncontours=25), row=1, col=1)
fig.add_trace(go.Surface(z=f(x), x=x1, y=x2), row=1, col=2)
# Plot settings
fig.update_traces(showscale=False)
fig.update_layout(autosize=False, width=1000, height=500)
fig.show()
Example 9¶
The function $f_0(x, y)=x^2 + y^2$ is convex, as its Hessian $$ \nabla^2f_0(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} $$ is positive definite. Visually this means, we can draw a line between any two points of the function and it will never intersect the function.
# Domain
x = torch.linspace(-1.5, 1.5, 100)
# Plot the function
fig = plt.figure(figsize=(6, 3))
plt.plot(x, x**2, "gray")
# Plot settings
plt.plot([-0.5, 1], [0.25, 1], ":k")
plt.annotate("$\hat{x}$", [-0.49, 0.33])
plt.plot([-0.5], [0.25], "ok")
plt.plot([1.0], [1.0], "ok")
plt.annotate("$\check{x}$", [0.93, 1.03])
plt.xlabel("$x_1$")
plt.ylabel("$f$")
plt.grid()
plt.tight_layout()
plt.savefig("../figures/convex_function_0.pdf", transparent=True)
plt.savefig("../figures/convex_function_0.svg", transparent=True)
plt.show()
Example 10¶
The function $f_1(x, y)=x^4-x^2+y^2$ is not strictly convex, because its Hessian $$ \nabla^2f_1(x,y) = \begin{pmatrix} 12x^2-2 & 0 \\ 0 & 2 \end{pmatrix} $$ is not positive definite. Visually this means, we can find two points, for which drawing a line between them would cross the function.
# Domain
x = torch.linspace(-1.5, 1.5, 100)
# Plot the functiom
fig = plt.figure(figsize=(6, 3))
plt.plot(x, x**4 - x**2, "gray")
# Plot settings
plt.plot([-0.5, 1], [-0.1875, 0], ":k")
plt.annotate("$\hat{x}$", [-0.6, 0.03])
plt.annotate("$\check{x}$", [0.9, 0.15])
plt.plot([-0.5], [-0.1875], "ok")
plt.plot([1.0], [0.0], "ok")
plt.xlabel("$x_1$")
plt.ylabel("$f$")
plt.grid()
plt.tight_layout()
plt.savefig("../figures/convex_function_1.pdf", transparent=True)
plt.savefig("../figures/convex_function_1.svg", transparent=True)
plt.show()
Example 11: Simple steepest decent¶
We want to find the solution of the following quadratic unconstrained optimization problem $$ \min_{\mathbf{x}} f(\mathbf{x})= (\mathbf{x}-\tilde{\mathbf{x}}) \cdot \mathbf{Q} \cdot (\mathbf{x}-\tilde{\mathbf{x}}) $$ with $$ \mathbf{Q} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \tilde{\mathbf{x}} = \begin{pmatrix} -1\\ 1 \end{pmatrix} . $$
The optimization path of a simple steepest decent method with a starting point $\mathbf{x}^0= (4, -1)^\top$ and $\eta=0.1$ is shown in the plot below with a blue line. However, the solution requires quite a lot of iterations.
# Define domain
x0 = torch.linspace(-6, 6, steps=100)
x1 = torch.linspace(-6, 6, steps=100)
x = torch.stack(torch.meshgrid(x0, x1, indexing="xy"), dim=2)
# Define constants
xt = torch.tensor([-1.0, 1.0])
Q = torch.tensor([[2.0, 1.0], [1, 1.0]])
# Define function
def f(x):
dx = x - xt
return torch.einsum("...i,ij,...j", dx, Q, dx)
def simple_decent(x_init, func, eta=0.1, max_iter=100):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
for _ in range(max_iter):
# Compute gradient
grad = torch.autograd.grad(func(x).sum(), x)[0]
# Make a step
x = x - eta * grad
# Save intermediate results
points.append(x)
return points
x_init = torch.tensor([4.0, -1.0])
path = simple_decent(x_init, f)
plot_contours(
x, f(x), opti=[-1, 1], paths={"Simple steepest decent": path}, figsize=(4, 4)
)
plt.xticks([-6, -4, -2, 0, 2, 4, 6])
plt.yticks([-6, -4, -2, 0, 2, 4, 6])
plt.savefig("../figures/simple_decent.svg", transparent=True)
Example 12: Armijo condition¶
Consider the function $f(x)$ displayed below. The Armijo condition is satisfied in all green ranges.
# Domain
x = torch.linspace(-2, 5, 100)
# Function
f = lambda x: (0.1 * x) ** 2 - x**3 + 0.2 * x**4
# Analytical derivative
f_d = lambda x: 0.2 * x - 3 * x**2 + 0.8 * x**3
# Linearization
g = lambda x, c: f(-1.5) + c * f_d(-1.5) * (x + 1.5)
# Plot lines
fig = plt.figure(figsize=(6, 3))
plt.plot(x, f(x), "gray", label="$f(x)$")
plt.plot(x, g(x, 1), ":k", label="$f(x^k) + f'(x^k) (x-x^k)$")
plt.plot(x, g(x, 0.3), "-k", label="$f(x^k) + c f'(x^k) (x-x^k)$")
plt.plot([-1.5], [f(-1.5)], "ok")
# Mark regions
rect = patches.Rectangle(
(-1.5, -15), 1.5, 25, linewidth=1, facecolor="green", alpha=0.2
)
plt.gca().add_patch(rect)
rect = patches.Rectangle(
(2.35, -15), 1.8, 25, linewidth=1, facecolor="green", alpha=0.2
)
plt.gca().add_patch(rect)
# Plot settings
plt.ylim([-15, 10])
plt.xlabel("$x$")
plt.ylabel("$f$")
plt.legend()
plt.grid()
plt.tight_layout()
plt.savefig("../figures/armijo_condition.pdf", transparent=True)
plt.savefig("../figures/armijo_condition.svg", transparent=True)
plt.show()
Example 13: Steepest decent with incomplete line search¶
We consider the optimization problem stated in Example 11 using a steepest decent method with incomplete line search. The optimization path for a starting point $\mathbf{x}^0= (4, -1)^\top$, $\eta^0=5.0$, $c=0.5$, and $\rho=0.8$ is shown in the plot below with a blue line. The solution converges much faster than the simple steepest decent.
# Define domain
x0 = torch.linspace(-6, 6, steps=100)
x1 = torch.linspace(-6, 6, steps=100)
x = torch.stack(torch.meshgrid(x0, x1, indexing="xy"), dim=2)
# Define constants
xt = torch.tensor([-1.0, 1.0])
Q = torch.tensor([[2.0, 1.0], [1, 1.0]])
# Define function
def f(x):
dx = x - xt
return torch.einsum("...i,ij,...j", dx, Q, dx)
def incomplete_line_search(x_init, func, eta_0=5.0, c=0.5, rho=0.8, max_iter=10):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
for _ in range(max_iter):
# Compute direction
grad = torch.autograd.grad(func(x).sum(), x)[0]
grad_norm = grad.norm()
p = -grad / grad_norm
# Backtracking algorithm for incomplete line search
eta = eta_0
while func(x + eta * p) > func(x) + c * eta * torch.dot(grad, p):
eta *= rho
# Make a step
x = x + eta * p
# Save intermediate results
points.append(x)
return points
x_init = torch.tensor([4.0, -1.0])
path = incomplete_line_search(x_init, f)
plot_contours(
x, f(x), opti=[-1, 1], paths={"Incomplete line search": path}, figsize=(4, 4)
)
plt.xticks([-6, -4, -2, 0, 2, 4, 6])
plt.yticks([-6, -4, -2, 0, 2, 4, 6])
plt.savefig("../figures/steepest_decent.svg", transparent=True)
Example 14: Conjugated gradients¶
We consider the optimization problem stated in Example 11 using the CG method with incomplete line search for the sub-problem. The optimization path for a starting point $\mathbf{x}^0= (4, -1)^\top$, $\eta^0=5.0$, $c=0.5$, and $\rho=0.8$ is shown in the plot below with a blue line. The solution converges in just two iterations for this 2D problem, as the problem is quadratic.
# Define domain
x0 = torch.linspace(-6, 6, steps=100)
x1 = torch.linspace(-6, 6, steps=100)
x = torch.stack(torch.meshgrid(x0, x1, indexing="xy"), dim=2)
# Define constants
xt = torch.tensor([-1.0, 1.0])
Q = torch.tensor([[2.0, 1.0], [1, 1.0]])
# Define function
def f(x):
dx = x - xt
return torch.einsum("...i,ij,...j", dx, Q, dx)
def cg(x_init, func, max_iter=5):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
for i in range(max_iter):
# Compute gradient
grad = torch.autograd.grad(func(x).sum(), x)[0]
# Compute conjugated direction
if i > 0:
beta = torch.dot(grad, grad) / torch.dot(grad_old, grad_old)
p = -grad + beta * p_old
else:
p = -grad
# Solve subproblem with incomplete line search
eta_0 = torch.tensor([1.0])
etas = incomplete_line_search(eta_0, lambda eta: func(x + eta * p))
# Make a step
x = x + etas[-1][0] * p
# Store gradients
grad_old = grad
p_old = p
# Save intermediate results
points.append(x)
return points
x_init = torch.tensor([4.0, -1.0])
path = cg(x_init, f)
plot_contours(
x, f(x), opti=[-1, 1], paths={"Conjugated gradients": path}, figsize=(4, 4)
)
plt.xticks([-6, -4, -2, 0, 2, 4, 6])
plt.yticks([-6, -4, -2, 0, 2, 4, 6])
plt.savefig("../figures/cg.svg", transparent=True)
Example 15: Newton's method¶
Consider the nonlinear function $f(x) = x^2 - 3$ displayed below. To find a root, i.e. the values of $x$ where $f(x)=0$, we can employ Newtons method:
- Pick a starting point $x^0$.
- Compute the derivative $f'(x)$.
- Compute a new point $x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$.
- Repeat the steps 2 and 3 until converged.
# Domain
x = torch.linspace(1, 3.5, 100)
# Domain for first linearization
xx = torch.linspace(2, 3, 100)
# Domain for second linearization
xxx = torch.linspace(1.75, 2, 100)
# Define the function
f = lambda x: x**2 - 3
# Analytical derivative of the function
f_d = lambda x: 2 * x
# First linearization
g = lambda x: f(3.0) + f_d(3) * (x - 3)
# Second linearization
h = lambda x: f(2.0) + f_d(2) * (x - 2)
# Plot lines and annotations
fig = plt.figure(figsize=(6, 3))
plt.plot(x, f(x), "gray", label="$f(x)$")
plt.plot([3, 3], [0, 6], ":k")
plt.plot([3], [f(3)], "ok")
plt.annotate("$x^0$", [2.9, 6.15])
plt.plot(xx, g(xx), "-k")
plt.plot([2], [f(2)], "ok")
plt.plot([2, 2], [0, 1], ":k")
plt.annotate("$x^1$", [1.9, 1.2])
plt.plot(xxx, h(xxx), "-k")
plt.plot([1.75], [f(1.75)], "ok")
plt.plot([1.75, 1.75], [0, 0.0625], ":k")
plt.annotate("$x^2$", [1.7, 0.4])
# Plot settings
plt.ylim([-2, 8])
plt.xlabel("$x$")
plt.ylabel("$f$")
plt.legend()
plt.grid()
plt.tight_layout()
plt.savefig("../figures/netwon_iteration.pdf", transparent=True)
plt.savefig("../figures/netwon_iteration.svg", transparent=True)
plt.show()
Example 16: BFGS¶
We consider the optimization problem stated in Example 11 using the BFGS method with incomplete line search for the sub-problem. The optimization path for a starting point $\mathbf{x}^0= (4, -1)^\top$, $\eta^0=5.0$, $c=0.5$, and $\rho=0.8$ is shown in the plot below with a blue line. The solution converges in just two iterations for this 2D quadratic problem.
# Define domain
x0 = torch.linspace(-6, 6, steps=100)
x1 = torch.linspace(-6, 6, steps=100)
x = torch.stack(torch.meshgrid(x0, x1, indexing="xy"), dim=2)
# Define constants
xt = torch.tensor([-1.0, 1.0])
Q = torch.tensor([[2.0, 1.0], [1, 1.0]])
# Define function
def f(x):
dx = x - xt
return torch.einsum("...i,ij,...j", dx, Q, dx)
def bfgs(x_init, func, max_iter=5):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
d = x.size(dim=0)
I = torch.eye(d)
H_i = I.clone()
for _ in range(max_iter):
# Compute gradient
grad = torch.autograd.grad(func(x).sum(), x)[0]
# Compute search direction
p = -H_i @ grad
# Solve subproblem with incomplete line search decent
eta_0 = torch.tensor([1.0])
etas = incomplete_line_search(eta_0, lambda eta: func(x + eta * p))
# Make a step
x = x + etas[-1][0] * p
# Difference of gradients
y = torch.autograd.grad(func(x).sum(), x)[0] - grad
py = torch.inner(p, y)
H_i = (I - torch.outer(p, y) / py) @ H_i @ (
I - torch.outer(y, p) / py
) + torch.outer(p, p) / py
# Save intermediate results
points.append(x)
return points
x_init = torch.tensor([4.0, -1.0])
path = bfgs(x_init, f)
plot_contours(x, f(x), opti=[-1, 1], paths={"BFGS": path}, figsize=(4, 4))
plt.xticks([-6, -4, -2, 0, 2, 4, 6])
plt.yticks([-6, -4, -2, 0, 2, 4, 6])
plt.savefig("../figures/bfgs.svg", transparent=True)