Exercise 02 - Gradient decent methods¶
We re-use the quadratic function from last exercise $f: \mathcal{R}^2 \rightarrow \mathcal{R}$ defined as
$$ f(\mathbf{x}) = (\mathbf{x} - \tilde{\mathbf{x}}) \cdot \mathbf{Q} \cdot (\mathbf{x} - \tilde{\mathbf{x}}) $$ with $$ \mathbf{Q} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \tilde{\mathbf{x}} = \begin{pmatrix} -1\\ 1 \end{pmatrix} $$ to test the implemented gradient decent methods. The solution to the problem $$ \min_{\mathbf{x}} f(\mathbf{x}) $$ is $\mathbf{x}^*=\tilde{\mathbf{x}}$.
# import matplotlib.pyplot as plt
import torch
from utils import plot_contours
torch.set_default_dtype(torch.double)
# Define domain
x0 = torch.linspace(-6, 6, steps=100)
x1 = torch.linspace(-6, 6, steps=100)
x = torch.stack(torch.meshgrid(x0, x1, indexing="xy"), dim=2)
# Define constants
xt = torch.tensor([-1.0, 1.0])
Q = torch.tensor([[2.0, 1.0], [1, 1.0]])
# Define function
def f(x):
dx = x - xt
return torch.einsum("...i,ij,...j", dx, Q, dx)
# Plot function as contour lines
plot_contours(x, f(x), opti=[-1, 1], figsize=(4, 4))
Task 1 - Simple steepest decent¶
We have a predefined function named simple_decent(x_init, func, eta=0.1, maxiter=100)
that takes an initial point $\mathbf{x}_0 \in \mathcal{R}^d$ named x_init
, a function func
, a step size eta
, and an iteration limit max_iter
.
a) Implement a simple steepest gradient decent in that function. The function should return a list of all steps $\mathbf{x}_k \in \mathcal{R}^d$ taken during the optimization, i.e. [[x1_0, x2_0, ..., xd_0], [x1_1, x2_1, ..., xd_1], ...]
def simple_decent(x_init, func, eta=0.1, max_iter=100):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
for _ in range(max_iter):
# Compute gradient
grad = torch.autograd.grad(func(x).sum(), x)[0]
# Make a step
x = x - eta * grad
# Save intermediate results
points.append(x)
return points
b) Test the function with the following code for $$ \mathbf{x}_0 = \begin{pmatrix} 4\\ -1 \end{pmatrix} $$ and play around with the optional parameters.
x_init = torch.tensor([4.0, -1.0])
path = simple_decent(x_init, f)
plot_contours(x, f(x), opti=[-1, 1], paths={"Simple steepest decent": path})
print(f"Final values are x_1={path[-1][0]:.3f}, x_2={path[-1][1]:.3f}")
Final values are x_1=-0.999, x_2=0.999
Task 2 - Steepest decent method with incomplete line search¶
We have a predefined function named incomplete_line_search(x_init, func, eta_0=5.0, c=0.5, rho=0.8, maxiter=10)
that takes an initial point $\mathbf{x}_0 \in \mathcal{R}^d$ named x_init
, a function func
, an initial step size eta_0
, a Armijo constant c
, a backtracking reduction factor rho
and an iteration limit max_iter
.
a) Implement a steepest gradient decent with incompleted line search using the backtracking algorithm in that function. The function should return a list of all steps $\mathbf{x}_k \in \mathcal{R}^d$ taken during the optimization, i.e. [[x1_0, x2_0, ..., xd_0], [x1_1, x2_1, ..., xd_1], ...]
def incomplete_line_search(x_init, func, eta_0=5.0, c=0.5, rho=0.8, max_iter=10):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
for _ in range(max_iter):
# Compute direction
grad = torch.autograd.grad(func(x).sum(), x)[0]
p = -grad / grad.norm()
# Backtracking algorithm for incomplete line search
eta = eta_0
while func(x + eta * p) > func(x) + c * eta * torch.dot(grad, p):
eta *= rho
# Make a step
x = x + eta * p
# Save intermediate results
points.append(x)
return points
b) Test the function with the following code for $$ \mathbf{x}_0 = \begin{pmatrix} 4\\ -1 \end{pmatrix} $$ and play around with the optional arguments.
x_init = torch.tensor([4.0, -1.0])
path = incomplete_line_search(x_init, f)
plot_contours(x, f(x), opti=[-1, 1], paths={"Incomplete line search": path})
print(f"Final values are x_1={path[-1][0]:.3f}, x_2={path[-1][1]:.3f}")
Final values are x_1=-0.985, x_2=0.985
Task 3 - Steepest decent method with complete line search¶
We have a predefined function named complete_line_search(x_init, func, maxiter=10)
that takes an initial point $\mathbf{x}_0 \in \mathcal{R}^d$ named x_init
, a function func
, and an iteration limit max_iter
.
a) Implement a steepest gradient decent with completed line search re-using the previous incomplete_line_search
to solve the subproblem of finding the optimal step size $\eta^*_k$. The function should return a list of all steps $\mathbf{x}_k \in \mathcal{R}^d$ taken during the optimization, i.e. [[x1_0, x2_0, ..., xd_0], [x1_1, x2_1, ..., xd_1], ...]
def complete_line_search(x_init, func, max_iter=10):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
for _ in range(max_iter):
# Compute direction
grad = torch.autograd.grad(func(x).sum(), x)[0]
p = -grad / grad.norm()
# Solve subproblem with incomplete line search
eta_0 = torch.tensor([1.0])
etas = incomplete_line_search(eta_0, lambda eta: func(x + eta * p))
# Make a step
x = x + etas[-1][0] * p
# Save intermediate results
points.append(x)
return points
b) Test the function with the following code for $$ \mathbf{x}_0 = \begin{pmatrix} 4\\ -1 \end{pmatrix} $$ and discuss why an incomplete line search is usually choosen over a complete line search.
x_init = torch.tensor([4.0, -1.0])
path = complete_line_search(x_init, f)
plot_contours(x, f(x), opti=[-1, 1], paths={"Complete line search": path})
print(f"Final values are x_1={path[-1][0]:.3f}, x_2={path[-1][1]:.3f}")
Final values are x_1=-1.000, x_2=1.000
Task 4 - Conjugated gradients¶
We have a predefined function named cg(x_init, func, maxiter=5)
that takes an initial point $\mathbf{x}_0 \in \mathcal{R}^d$ named x_init
, a function func
, and an iteration limit max_iter
.
a) Implement the conjugated gradients method in that function re-using the previous incomplete_line_search
to solve the subproblem of finding the optimal step size $\eta^*_k$. The function should return a list of all steps $\mathbf{x}_k \in \mathcal{R}^d$ taken during the optimization, i.e. [[x1_0, x2_0, ..., xd_0], [x1_1, x2_1, ..., xd_1], ...]
def cg(x_init, func, max_iter=5):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
for i in range(max_iter):
# Compute gradient
grad = torch.autograd.grad(func(x).sum(), x)[0]
# Compute conjugated direction
if i == 0:
p = -grad
else:
beta = torch.dot(grad, grad) / torch.dot(grad_old, grad_old)
p = -grad + beta * p_old
# Solve subproblem with incomplete line search
eta_0 = torch.tensor([1.0])
etas = incomplete_line_search(eta_0, lambda eta: func(x + eta * p))
# Make a step
x = x + etas[-1][0] * p
# Store gradients
grad_old = grad
p_old = p
# Save intermediate results
points.append(x)
return points
b) Test the function with the following code for $$ \mathbf{x}_0 = \begin{pmatrix} 4\\ -1 \end{pmatrix} $$ and discuss its benefits and drawbacks.
x_init = torch.tensor([4.0, -1.0])
path = cg(x_init, f)
plot_contours(x, f(x), opti=[-1, 1], paths={"Conjugated gradients": path})
print(f"Final values are x_1={path[-1][0]:.3f}, x_2={path[-1][1]:.3f}")
Final values are x_1=-1.000, x_2=1.000
Task 5 - BFGS¶
We have a predfined function named bfgs(x_init, func, maxiter=5)
that takes an initial point $\mathbf{x}_0 \in \mathcal{R}^d$ named x_init
, a function func
, and an iteration limit max_iter
.
a) Implement the BFGS method in that function re-using the previous incomplete_line_search
to solve the subproblem of finding the optimal step size $\eta^*_k$. The function should return a list of all steps $\mathbf{x}_k \in \mathcal{R}^d$ taken during the optimization, i.e. [[x1_0, x2_0, ..., xd_0], [x1_1, x2_1, ..., xd_1], ...]
def bfgs(x_init, func, max_iter=5):
# Copy initial x to new differentiable tensor x
x = x_init.clone().requires_grad_()
points = [x]
d = x_init.shape[0]
I = torch.eye(d)
H_i = I.clone()
for _ in range(max_iter):
# Compute gradient
grad = torch.autograd.grad(func(x).sum(), x)[0]
# Compute search direction
p = -H_i @ grad
# Solve subproblem with incomplete line search decent
eta_0 = torch.tensor([1.0])
etas = incomplete_line_search(eta_0, lambda eta: func(x + eta * p))
# Make a step
x = x + etas[-1][0] * p
# Difference of gradients
y = torch.autograd.grad(func(x).sum(), x)[0] - grad
py = torch.inner(p, y)
H_i = (I - torch.outer(p, y) / py) @ H_i @ (
I - torch.outer(y, p) / py
) + torch.outer(p, p) / py
# Save intermediate results
points.append(x)
return points
b) Test the function with the following code for $$ \mathbf{x}_0 = \begin{pmatrix} 4\\ -1 \end{pmatrix} $$ and discuss its benefits and drawbacks.
x_init = torch.tensor([4.0, -1.0])
path = bfgs(x_init, f)
plot_contours(x, f(x), opti=[-1, 1], paths={"BFGS": path})
print(f"Final values are x_1={path[-1][0]:.3f}, x_2={path[-1][1]:.3f}")
Final values are x_1=-1.000, x_2=1.000
Task 6 - Comparison¶
The following code plots all optimization paths on the given quadratic problem.
x_init = torch.tensor([4.0, -1.0])
path_simple = simple_decent(x_init, f)
path_ils = incomplete_line_search(x_init, f)
path_cls = complete_line_search(x_init, f)
path_cg = cg(x_init, f)
path_bfgs = bfgs(x_init, f)
plot_contours(
x,
f(x),
opti=[-1, 1],
paths={
"Simple": path_simple,
"ILS": path_ils,
"CLS": path_cls,
"CG": path_cg,
"BFGS": path_bfgs,
},
)
The quadratic problem is a rather easy optimization problem. Compare the algorithms for some hard optimization test functions (himmelblau_function
and rosenbrock_function
) and different start points.
def himmelblau_function(x):
return (x[..., 0] ** 2 + x[..., 1] - 11) ** 2 + (
x[..., 0] + x[..., 1] ** 2 - 7
) ** 2
x_init = torch.tensor([0.0, 0.0])
path_simple = simple_decent(x_init, himmelblau_function, eta=0.01)
path_ils = incomplete_line_search(x_init, himmelblau_function)
path_cls = complete_line_search(x_init, himmelblau_function)
path_cg = cg(x_init, himmelblau_function)
path_bfgs = bfgs(x_init, himmelblau_function, max_iter=10)
plot_contours(
x,
himmelblau_function(x),
title="Himmelblau's function",
opti=[3, 2],
paths={
"Simple": path_simple,
"ILS": path_ils,
"CLS": path_cls,
"CG": path_cg,
"BFGS": path_bfgs,
},
)
print("Results:")
print(f"Simple: x_1={path_simple[-1][0]:.3f}, x_2={path_simple[-1][1]:.3f}")
print(f"ILS: x_1={path_ils[-1][0]:.3f}, x_2={path_ils[-1][1]:.3f}")
print(f"CLS: x_1={path_cls[-1][0]:.3f}, x_2={path_cls[-1][1]:.3f}")
print(f"CG: x_1={path_cg[-1][0]:.3f}, x_2={path_cg[-1][1]:.3f}")
print(f"BFGS: x_1={path_bfgs[-1][0]:.3f}, x_2={path_bfgs[-1][1]:.3f}")
Results: Simple: x_1=3.000, x_2=2.000 ILS: x_1=3.000, x_2=2.000 CLS: x_1=3.000, x_2=2.000 CG: x_1=-2.806, x_2=3.128 BFGS: x_1=3.000, x_2=2.000
# Define domain
x0 = torch.linspace(-1.5, 1.5, steps=100)
x1 = torch.linspace(-1.5, 1.5, steps=100)
x = torch.stack(torch.meshgrid(x0, x1, indexing="xy"), dim=2)
def rosenbrock_function(x):
return 100 * (x[..., 1] - x[..., 0] ** 2) ** 2 + (1 - x[..., 0]) ** 2
x_init = torch.tensor([0.0, 1.0])
path_simple = simple_decent(x_init, rosenbrock_function, eta=0.001, max_iter=10000)
path_ils = incomplete_line_search(x_init, rosenbrock_function, max_iter=500)
path_bfgs = bfgs(x_init, rosenbrock_function, max_iter=10)
plot_contours(
x,
rosenbrock_function(x),
title="Rosenbrock's function",
opti=[1, 1],
levels=50,
paths={
"Simple": path_simple,
"ILS": path_ils,
"BFGS": path_bfgs,
},
)
print("Results:")
print(f"Simple: x_1={path_simple[-1][0]:.3f}, x_2={path_simple[-1][1]:.3f}")
print(f"ILS: x_1={path_ils[-1][0]:.3f}, x_2={path_ils[-1][1]:.3f}")
print(f"BFGS: x_1={path_bfgs[-1][0]:.3f}, x_2={path_bfgs[-1][1]:.3f}")
Results: Simple: x_1=0.994, x_2=0.989 ILS: x_1=0.999, x_2=0.998 BFGS: x_1=1.040, x_2=1.083